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Evaluation of Source Separation Algorithms
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Goal Analyze contribution of each component in output.



Background: BSS Eval Metrics



Signal Model

Signal Model

The following signals of length T are available
e Referencesignals: sm, k=1,...,M
e Estimated signals: §,, k=1,....M

§m:Zkhkm*sk+bm, m=1...,M Q)

e The artifact term is by, there is no reference available
® The unknown filters hy,, of length L model reverb, calibration error, etc.

']. = h11*"|—h12* + W



BSS Eval Metrics —Idea

Ref. Vincent et al., Performance measurement in blind source separation, TASLP, 2006.
(2875 citations, and counting)

Decomposes the estimated signals in three orthognal parts
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o stkcrget: contribution of reference k

o e]nerf; contribution of other sources
e edrtif: contribution of artifacts



BSS Eval Metrics —Definitions

BSS Eval defines three metrics
e Signal-to-Distortion Ratio (SDR)
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SDRym = 1010g1g
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e Signal-to-Interference Ratio (SIR)
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e Signal-to-Artefact Ratio (SDR)
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BSS Eval Metrics —Conventional Computations

subspace of artifacts
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Most toolboxes follow definition:
1. Compute sf(i;get, enterf, gartif
2. Apply definition of SDR, SIR, SAR o _pye,
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Required Computations

M: number of signals, T: signal length, L filter size
1. Compute statistics of ref./est. O(M?T log T)
2. Solve large linear systems O(ML3)/O((ML)?) (Gaussian elimination)
3. Filter signals O(M2T log T)
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BSS Eval Metrics —Conventional Computations

subspace of artifacts

Sm

Most toolboxes follow definition:
1. Compute sf(i;get, enterf, gartif
2. Apply definition of SDR, SIR, SAR o _pye,
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Required Computations

M: number of signals, T: signal length, L filter size
1. Compute statistics of ref./est. O(M?T log T)
2. Solve large linear systems O(ML log L)/O(M3L log L) (Conjugate Gradient)

3. Fittersignals-OMZTog Ty — O(ML)

We propose an efficient implementation of BSS Eval!



Fast BSS Eval



Main New Insight

The metrics are functions of the subspace angles!

Theorem

SDRym = —10 logqg tan? aym
SIRkm = —101log1o tan? Bim
SARm = —10logqo tan? Yem
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Proof (SDR only)

everything else

Sm
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Proof (SDR only)

everything else
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Fast Computation

The projection matrix P, onto the shifts of reference s is
P = A(ALA) AL

where A, contains shifted versions of s, in its columns
For the SDR, we only need to compute

IPkSml|% = (A} 8m) " (AL A) (A 8m)

Proposed Algorithm (SDR)
1. Compute Ry = A Ay and X, = A/l §m,
2. Solve Ryh = Xy, this is a Toeplitz system
3. Compute cos? axm, = X, _h

4. SDRym = 10 logy 1<% gkm_

—c0s2
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Solve Rkh = Xkm

The L x L matrix Ry is Toeplitz, there are fast solvers!

Reference

R. H. Chan and M. K. Ng, “Conjugate Gradient Methods for Toeplitz Systems,”SIAM Rev., vol. 38,
no. 3, pp. 427-482, Sep. 1996.
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Solve Rkh = Xkm

The L x L matrix Ry is Toeplitz, there are fast solvers!
¢ Conjugate Gradient Algorithm
e Multiplication by Ry in O(L log L) via FFT
¢ Circulant pre-conditioner, also O(L log L) via FFT
e Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

R. H. Chan and M. K. Ng, “Conjugate Gradient Methods for Toeplitz Systems,”SIAM Rev., vol. 38,
no. 3, pp. 427-482, Sep. 1996.



Experiments



Implementation

Python implementation in fast-bss-eval package

pip install fast-bss-eval

Supports numpy/torch transparently
Differentiable via torch

Options for Gaussian eliminiation / conjugate gradient
Improved numerical stability

Baselines
package mir_eval sigsep ci_sdr
metrics SDR/SIR/SAR  SDR/SIR/SAR  SDR only
backend numpy numpy torch
reference [Raffel2014]  github/sigsep [Boeddeker2021]




Testing Accuracy

error wrtmir_eval
dataset: WSJ1 (test), 2/3/4 speakers, noise from CHIME3

B solve/fle4  EEE solve/fl32 B CGD10/fle4 B CGD10/fl32
SDR SIR SAR
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Speed Contest

BN mir_eval MW sigsep EEE solve/fl64 WM solve/fl32 mmm CGD10/fl64 mmm CGD10/fI32

2 channels 3 channels 4 channels

Wbk

1CPU 8CPU GPU 1CPU 8CPU 1CPU 8CPU GPU

10!

Runtime (s)



Conclusion

Main Contributions
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Conclusion

Main Contributions
A fast algorithm for BSS Eval, to evaluate source separation algorithms
¢ New insights into BSS Eval metrics as subspace angles
* Reduced operation count
e Fast Toeplitz solver
* Python package compatible with numpy/torch
® Orders of magnitude speed-up compared to existing packages

Use it: pip install fast-bss-eval

from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
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