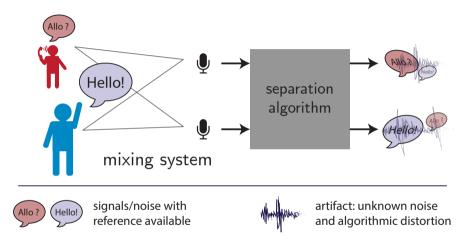
SDR —Medium Rare with Fast Computations

Robin Scheibler April 21, 2022

LINE

Evaluation of Source Separation Algorithms



Goal Analyze contribution of each component in output.

Background: BSS Eval Metrics

Signal Model

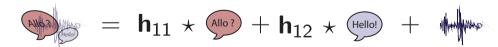
Signal Model

The following signals of length T are available

- Reference signals: \mathbf{s}_{m} , k = 1, ..., M
- Estimated signals: $\hat{\mathbf{s}}_{m}$, $k = 1, \dots, M$

$$\hat{\mathbf{s}}_{m} = \sum_{k} \mathbf{h}_{km} \star \mathbf{s}_{k} + \mathbf{b}_{m}, \quad m = 1, \dots, M$$
 (1)

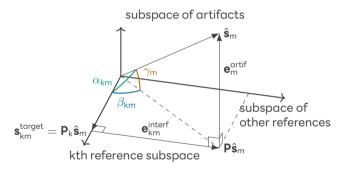
- The **artifact** term is b_m , there is no reference available
- The **unknown** filters **h**_{km} of length L model reverb, calibration error, etc.



BSS Eval Metrics—Idea

Ref. Vincent et al., Performance measurement in blind source separation, TASLP, 2006. (2875 citations, and counting)

Decomposes the estimated signals in three orthogoal parts



- s_k^{target}: contribution of reference k
 e_{km}^{interf}: contribution of other sources
 e_a^{artif}: contribution of artifacts

BSS Eval Metrics—Definitions

BSS Eval defines three metrics

• Signal-to-Distortion Ratio (SDR)

$$\mathsf{SDR}_{km} = 10 \log_{10} \frac{\|\boldsymbol{s}_{km}^{\mathsf{target}}\|^2}{\|\boldsymbol{e}_{km}^{\mathsf{interf}} + \boldsymbol{e}_{km}^{\mathsf{artif}}\|^2}$$

Signal-to-Interference Ratio (SIR)

$$\mathsf{SIR}_{km} = 10 \, \mathsf{log}_{10} \, \frac{\|\boldsymbol{s}_{km}^{\mathsf{turget}}\|^2}{\|\boldsymbol{e}_{km}^{\mathsf{interf}}\|^2}$$

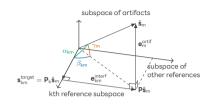
Signal-to-Artefact Ratio (SDR)

$$\mathsf{SAR}_{\mathsf{km}} = \mathsf{10} \, \mathsf{log}_{\mathsf{10}} \, \frac{\|\boldsymbol{s}_{\mathsf{km}}^{\mathsf{target}} + \boldsymbol{e}_{\mathsf{km}}^{\mathsf{interf}}\|^2}{\|\boldsymbol{e}_{\mathsf{m}}^{\mathsf{artif}}\|^2}$$

Ę

Most toolboxes follow definition:

- 1. Compute \mathbf{s}_{km}^{target} , \mathbf{e}_{km}^{interf} , \mathbf{e}_{m}^{artif}
- 2. Apply definition of SDR, SIR, SAR



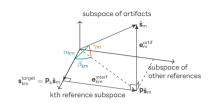
Required Computations

M: number of signals, T: signal length, L filter size

- 1. Compute statistics of ref./est. O(M²T log T)
- 2. Solve large linear systems $O(ML^3)/O((ML)^3)$ (Gaussian elimination)
- Filter signals O(M²T log T)

Most toolboxes follow definition:

- 1. Compute \mathbf{s}_{km}^{target} , \mathbf{e}_{km}^{interf} , \mathbf{e}_{m}^{artif}
- 2. Apply definition of SDR, SIR, SAR



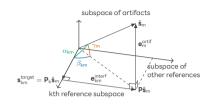
Required Computations

M: number of signals, T: signal length, L filter size

- 1. Compute statistics of ref./est. $O(M^2T \log T)$
- 2. Solve large linear systems $O(ML^3)/O((ML)^3)$ (Gaussian elimination)
- 3. Filter signals $O(M^2T \log T)$

Most toolboxes follow definition:

- 1. Compute \mathbf{s}_{km}^{target} , \mathbf{e}_{km}^{interf} , \mathbf{e}_{m}^{artif}
- 2. Apply definition of SDR, SIR, SAR



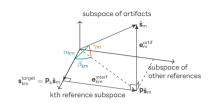
Required Computations

M: number of signals, T: signal length, L filter size

- 1. Compute statistics of ref./est. $O(M^2T \log T)$
- 2. Solve large linear systems $O(ML^3)/O((ML)^3)$ (Gaussian elimination)
- 3. Filter signals $O(M^2T \log T)$

Most toolboxes follow definition:

- 1. Compute \mathbf{s}_{km}^{target} , \mathbf{e}_{km}^{interf} , \mathbf{e}_{m}^{artif}
- 2. Apply definition of SDR, SIR, SAR



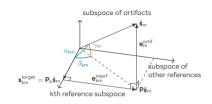
Required Computations

M: number of signals, T: signal length, L filter size

- 1. Compute statistics of ref./est. $O(M^2T \log T)$
- 2. Solve large linear systems $O(ML \log L)/O(M^3L \log L)$ (Conjugate Gradient)
- 3. Filter signals $O(M^2T \log T)$

Most toolboxes follow definition:

- 1. Compute \mathbf{s}_{km}^{target} , \mathbf{e}_{km}^{interf} , \mathbf{e}_{m}^{artif}
- 2. Apply definition of SDR, SIR, SAR



Required Computations

M: number of signals, T: signal length, L filter size

- 1. Compute statistics of ref./est. $O(M^2T \log T)$
- 2. Solve large linear systems $O(ML \log L)/O(M^3L \log L)$ (Conjugate Gradient)
- 3. Filter signals $O(M^2T \log T) \rightarrow O(ML)$

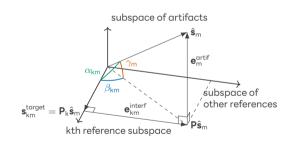
Fast BSS Eval

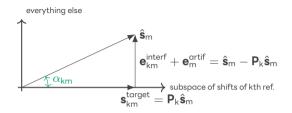
Main New Insight

The metrics are functions of the subspace angles!

Theorem

$$\begin{split} \text{SDR}_{\text{km}} &= -10 \log_{10} \tan^2 \alpha_{\text{km}} \\ \text{SIR}_{\text{km}} &= -10 \log_{10} \tan^2 \beta_{\text{km}} \\ \text{SAR}_{\text{m}} &= -10 \log_{10} \tan^2 \gamma_{\text{km}} \end{split}$$

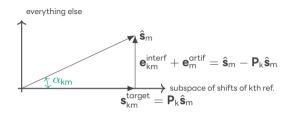




Recall definition of SDR, wlog $\|\hat{\boldsymbol{s}}_m\|=1$

$$\mathsf{SDR}_{\mathsf{km}} = \mathsf{10} \, \mathsf{log}_{\mathsf{10}} \, \frac{\|\mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2}{\|\hat{\mathbf{s}}_{\mathsf{m}} - \mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2} = \mathsf{10} \, \mathsf{log}_{\mathsf{10}} \, \frac{\mathsf{cos}^2 \, \alpha_{\mathsf{km}}}{1 - \mathsf{cos}^2 \, \alpha_{\mathsf{km}}}$$

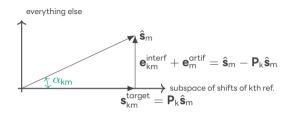
- 1. Definition of cosine: $\|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \cos^{2}\alpha_{km}$
- 2. Pythagor: $\|\hat{\mathbf{s}}_{m} \mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \|\hat{\mathbf{s}}_{m}\|^{2} \|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = 1 \cos^{2}\alpha_{km}$



Recall definition of SDR, wlog $\|\hat{\boldsymbol{s}}_m\|=1$

$$\mathsf{SDR}_{\mathsf{km}} = \mathsf{10} \log_{\mathsf{10}} \frac{\|\mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2}{\|\hat{\mathbf{s}}_{\mathsf{m}} - \mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2} = \mathsf{10} \log_{\mathsf{10}} \frac{\cos^2 \alpha_{\mathsf{km}}}{1 - \cos^2 \alpha_{\mathsf{km}}}$$

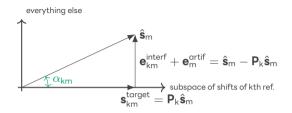
- 1. Definition of cosine: $\|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \cos^{2}\alpha_{km}$
- 2. Pythagor: $\|\hat{\mathbf{s}}_{m} \mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \|\hat{\mathbf{s}}_{m}\|^{2} \|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = 1 \cos^{2}\alpha_{km}$



Recall definition of SDR, wlog $\|\hat{\boldsymbol{s}}_m\|=1$

$$\mathsf{SDR}_{\mathsf{km}} = \mathsf{10} \log_{\mathsf{10}} \frac{\|\mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2}{\|\hat{\mathbf{s}}_{\mathsf{m}} - \mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2} = \mathsf{10} \log_{\mathsf{10}} \frac{\cos^2 \alpha_{\mathsf{km}}}{1 - \cos^2 \alpha_{\mathsf{km}}}$$

- 1. Definition of cosine: $\|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \cos^{2}\alpha_{km}$
- 2. Pythagor: $\|\hat{\mathbf{s}}_m \mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = \|\hat{\mathbf{s}}_m\|^2 \|\mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = 1 \cos^2 \alpha_{km}$



Recall definition of SDR, wlog $\|\hat{\boldsymbol{s}}_m\|=1$

$$\mathsf{SDR}_{\mathsf{km}} = \mathsf{10} \log_{\mathsf{10}} \frac{\|\mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2}{\|\hat{\mathbf{s}}_{\mathsf{m}} - \mathbf{P}_{\mathsf{k}} \hat{\mathbf{s}}_{\mathsf{m}}\|^2} = \mathsf{10} \log_{\mathsf{10}} \frac{\cos^2 \alpha_{\mathsf{km}}}{1 - \cos^2 \alpha_{\mathsf{km}}}$$

- 1. Definition of cosine: $\|\mathbf{P}_{k}\hat{\mathbf{s}}_{m}\|^{2} = \cos^{2}\alpha_{km}$
- 2. Pythagor: $\|\hat{\mathbf{s}}_m \mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = \|\hat{\mathbf{s}}_m\|^2 \|\mathbf{P}_k \hat{\mathbf{s}}_m\|^2 = 1 \cos^2 \alpha_{km}$

Fast Computation

The projection matrix \mathbf{P}_k onto the shifts of reference \mathbf{s}_k is

$$\boldsymbol{P}_k = \boldsymbol{A}_k (\boldsymbol{A}_k^{\top} \boldsymbol{A}_k)^{-1} \boldsymbol{A}_k^{\top}$$

where \mathbf{A}_k contains shifted versions of \mathbf{s}_k in its columns For the SDR, we only need to compute

$$\|\boldsymbol{\mathsf{P}}_{k}\hat{\boldsymbol{\mathsf{s}}}_{m}\|^{2} = (\boldsymbol{\mathsf{A}}_{k}^{\top}\hat{\boldsymbol{\mathsf{s}}}_{m})^{\top}(\boldsymbol{\mathsf{A}}_{k}^{\top}\boldsymbol{\mathsf{A}}_{k})^{-1}(\boldsymbol{\mathsf{A}}_{k}^{\top}\hat{\boldsymbol{\mathsf{s}}}_{m})$$

Proposed Algorithm (SDR)

- 1. Compute $\mathbf{R}_k = \mathbf{A}_k^{\top} \mathbf{A}_k$ and $\mathbf{x}_{km} = \mathbf{A}_k^{\top} \hat{\mathbf{s}}_m$
- 2. Solve $\mathbf{R}_k \mathbf{h} = \mathbf{x}_{km}$, this is a **Toeplitz** system
- 3. Compute $\cos^2 \alpha_{km} = \mathbf{x}_{km}^{\top} \mathbf{h}$
- 4. $SDR_{km} = 10 \log_{10} \frac{\cos^2 \alpha_{km}}{1 \cos^2 \alpha_{km}}$

The L \times L matrix \mathbf{R}_k is **Toeplitz**, there are fast solvers!

- Conjugate Gradient Algorithm
- Multiplication by \mathbf{R}_k in $O(L \log L)$ via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

The L \times L matrix \mathbf{R}_k is **Toeplitz**, there are fast solvers!

- Conjugate Gradient Algorithm
- Multiplication by R_k in O(L log L) via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

The L \times L matrix \mathbf{R}_k is **Toeplitz**, there are fast solvers!

- Conjugate Gradient Algorithm
- Multiplication by \mathbf{R}_k in $O(L \log L)$ via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

The L \times L matrix \mathbf{R}_k is **Toeplitz**, there are fast solvers!

- Conjugate Gradient Algorithm
- Multiplication by \mathbf{R}_k in $O(L \log L)$ via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

The L \times L matrix \mathbf{R}_k is **Toeplitz**, there are fast solvers!

- Conjugate Gradient Algorithm
- Multiplication by \mathbf{R}_k in $O(L \log L)$ via FFT
- Circulant pre-conditioner, also O(L log L) via FFT
- Eigenvalues cluster around 1, and converges in few iterations [Chan1996]

Reference

Experiments

Implementation

Python implementation in fast-bss-eval package

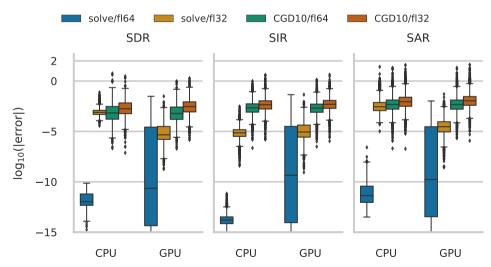
- Supports numpy/torch transparently
- Differentiable via torch
- Options for Gaussian eliminiation / conjugate gradient
- Improved numerical stability

Baselines

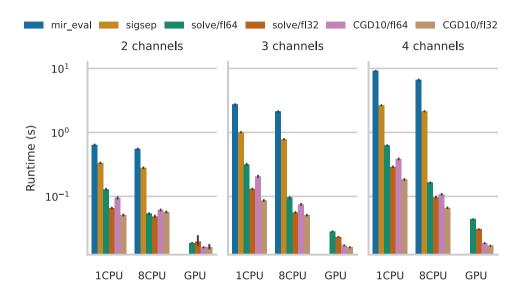
package	mir_eval	sigsep	ci_sdr
metrics	SDR/SIR/SAR	SDR/SIR/SAR	SDR only
backend reference	numpy [Raffel2014]	numpy github/sigsep	torch [Boeddeker2021]

Testing Accuracy

error wrt mir_eval dataset: WSJ1 (test), 2/3/4 speakers, noise from CHiME3



Speed Contest



Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```

Main Contributions

A fast algorithm for BSS Eval, to evaluate source separation algorithms

- New insights into BSS Eval metrics as subspace angles
- Reduced operation count
- Fast Toeplitz solver
- Python package compatible with numpy/torch
- Orders of magnitude speed-up compared to existing packages

```
from fast_bss_eval import bss_eval_sources
sdr, sir, sar, perm = bss_eval_sources(ref, est)
```